Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Submit feedback
  • Sign in / Register
G
geometrx
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 28
    • Issues 28
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Mason St Ledger
  • geometrx
  • Issues
  • #17

Closed
Open
Opened Apr 07, 2025 by Mason St Ledger@anfmason512001
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are excited to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now deploy DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled versions varying from 1.5 to 70 billion specifications to develop, experiment, and responsibly scale your generative AI ideas on AWS.

In this post, we demonstrate how to start with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar steps to release the distilled versions of the designs as well.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language model (LLM) established by DeepSeek AI that uses support discovering to enhance reasoning capabilities through a multi-stage training process from a DeepSeek-V3-Base structure. A key identifying function is its reinforcement knowing (RL) step, which was utilized to improve the model's reactions beyond the standard pre-training and setiathome.berkeley.edu tweak procedure. By incorporating RL, DeepSeek-R1 can adapt more successfully to user feedback and objectives, ultimately improving both relevance and clarity. In addition, DeepSeek-R1 utilizes a chain-of-thought (CoT) approach, meaning it's equipped to break down intricate inquiries and reason through them in a detailed way. This process permits the model to produce more accurate, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its wide-ranging capabilities DeepSeek-R1 has captured the industry's attention as a versatile text-generation design that can be integrated into numerous workflows such as representatives, rational reasoning and information analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion specifications in size. The MoE architecture allows activation of 37 billion criteria, making it possible for effective reasoning by routing inquiries to the most appropriate professional "clusters." This method permits the model to concentrate on various issue domains while maintaining overall performance. DeepSeek-R1 needs a minimum of 800 GB of HBM memory in FP8 format for reasoning. In this post, we will utilize an ml.p5e.48 xlarge instance to deploy the design. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs offering 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the reasoning abilities of the main R1 design to more effective architectures based on popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective models to mimic the habits and thinking patterns of the larger DeepSeek-R1 design, utilizing it as a teacher model.

You can deploy DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we recommend releasing this design with guardrails in location. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, prevent harmful material, and assess models against essential safety criteria. At the time of writing this blog site, for DeepSeek-R1 releases on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce numerous guardrails tailored to different use cases and use them to the DeepSeek-R1 design, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you need access to an ml.p5e circumstances. To examine if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To ask for a limit boost, produce a limit boost request and connect to your account team.

Because you will be deploying this model with Amazon Bedrock Guardrails, make certain you have the appropriate AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For directions, 89u89.com see Establish approvals to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to introduce safeguards, avoid damaging content, and evaluate models against key safety requirements. You can execute precaution for the DeepSeek-R1 model utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to examine user inputs and design actions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the model's output, another guardrail check is applied. If the output passes this last check, it's returned as the final result. However, if either the input or output is stepped in by the guardrail, a message is returned indicating the nature of the intervention and whether it happened at the input or output phase. The examples showcased in the following sections demonstrate inference using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation models (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following actions:

1. On the Amazon Bedrock console, choose Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can use the InvokeModel API to conjure up the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and choose the DeepSeek-R1 design.

The model detail page supplies vital details about the model's capabilities, rates structure, and execution guidelines. You can discover detailed usage instructions, consisting of sample API calls and code bits for integration. The model supports different text generation jobs, including material creation, code generation, and concern answering, utilizing its support learning optimization and CoT reasoning capabilities. The page also includes release alternatives and licensing details to help you start with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, select Deploy.

You will be prompted to configure the deployment details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, enter an endpoint name (between 1-50 alphanumeric characters). 5. For Number of instances, enter a number of circumstances (between 1-100). 6. For example type, select your instance type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure sophisticated security and infrastructure settings, consisting of virtual personal cloud (VPC) networking, service function permissions, and encryption settings. For higgledy-piggledy.xyz many utilize cases, the default settings will work well. However, for production deployments, you might wish to examine these settings to align with your company's security and compliance requirements. 7. Choose Deploy to start utilizing the model.

When the release is complete, you can evaluate DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in playground to access an interactive interface where you can explore various triggers and change design parameters like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat template for optimum results. For instance, material for inference.

This is an outstanding method to explore the design's reasoning and text generation capabilities before integrating it into your applications. The play area supplies immediate feedback, helping you understand how the design responds to various inputs and letting you tweak your prompts for optimum outcomes.

You can rapidly test the model in the playground through the UI. However, to invoke the deployed model programmatically with any Amazon Bedrock APIs, you require to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example shows how to carry out reasoning utilizing a released DeepSeek-R1 design through Amazon Bedrock using the invoke_model and ApplyGuardrail API. You can create a guardrail utilizing the Amazon Bedrock console or the API. For the example code to develop the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, configures inference criteria, and sends out a request to create text based upon a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML options that you can deploy with simply a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your usage case, with your data, and deploy them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 practical approaches: utilizing the user-friendly SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's check out both methods to assist you select the technique that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be prompted to create a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model web browser displays available designs, with details like the company name and design capabilities.

4. Look for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card reveals key details, consisting of:

- Model name

  • Provider name
  • Task classification (for example, Text Generation). Bedrock Ready badge (if relevant), indicating that this design can be registered with Amazon Bedrock, enabling you to utilize Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the model details page.

    The model details page includes the following details:

    - The model name and supplier details. Deploy button to release the model. About and Notebooks tabs with detailed details

    The About tab includes essential details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the model, it's recommended to review the model details and license terms to verify compatibility with your usage case.

    6. Choose Deploy to proceed with implementation.

    7. For Endpoint name, utilize the automatically generated name or produce a custom-made one.
  1. For Instance type ¸ pick a circumstances type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, get in the number of circumstances (default: 1). Selecting suitable instance types and counts is important for expense and efficiency optimization. Monitor your release to adjust these settings as needed.Under Inference type, Real-time reasoning is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all setups for precision. For this model, we strongly advise sticking to SageMaker JumpStart default settings and making certain that network isolation remains in place.
  4. Choose Deploy to release the model.

    The implementation process can take numerous minutes to finish.

    When implementation is complete, your endpoint status will alter to InService. At this moment, the model is all set to accept inference requests through the endpoint. You can keep an eye on the implementation progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is total, you can invoke the design utilizing a SageMaker runtime customer and incorporate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To begin with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the required AWS consents and environment setup. The following is a detailed code example that shows how to release and use DeepSeek-R1 for inference programmatically. The code for deploying the model is provided in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can also use the ApplyGuardrail API with your SageMaker JumpStart predictor. You can develop a guardrail utilizing the Amazon Bedrock console or the API, and execute it as revealed in the following code:

    Tidy up

    To avoid unwanted charges, finish the steps in this area to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you deployed the design using Amazon Bedrock Marketplace, complete the following steps:

    1. On the Amazon Bedrock console, under Foundation models in the navigation pane, pick Marketplace deployments.
  5. In the Managed deployments section, find the endpoint you wish to erase.
  6. Select the endpoint, and on the Actions menu, select Delete.
  7. Verify the endpoint details to make certain you're deleting the appropriate implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we explored how you can access and release the DeepSeek-R1 design utilizing Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, describe Use Amazon Bedrock tooling with Amazon SageMaker JumpStart designs, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Beginning with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He assists emerging generative AI companies build innovative solutions using AWS services and accelerated compute. Currently, he is concentrated on establishing techniques for fine-tuning and optimizing the reasoning performance of large language designs. In his downtime, Vivek delights in treking, seeing motion pictures, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science team at AWS. His location of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect dealing with generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI center. She is enthusiastic about developing options that help clients accelerate their AI journey and unlock service worth.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: anfmason512001/geometrx#17