Artificial General Intelligence
Artificial general intelligence (AGI) is a type of expert system (AI) that matches or exceeds human cognitive abilities across a vast array of cognitive tasks. This contrasts with narrow AI, which is limited to particular tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly surpasses human cognitive capabilities. AGI is considered among the definitions of strong AI.
Creating AGI is a main goal of AI research and of business such as OpenAI [2] and Meta. [3] A 2020 study identified 72 active AGI research study and advancement jobs throughout 37 countries. [4]
The timeline for attaining AGI stays a topic of continuous dispute amongst scientists and professionals. As of 2023, some argue that it might be possible in years or decades; others preserve it may take a century or longer; a minority think it may never ever be accomplished; and another minority declares that it is already here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed concerns about the rapid progress towards AGI, recommending it might be attained quicker than lots of anticipate. [7]
There is dispute on the precise meaning of AGI and regarding whether contemporary large language models (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many professionals on AI have specified that alleviating the risk of human termination presented by AGI must be an international concern. [14] [15] Others discover the development of AGI to be too remote to present such a risk. [16] [17]
Terminology
AGI is likewise referred to as strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or basic smart action. [21]
Some scholastic sources book the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one particular problem but does not have basic cognitive capabilities. [22] [19] Some academic sources utilize "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as human beings. [a]
Related concepts include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is a lot more generally smart than humans, [23] while the idea of transformative AI relates to AI having a big effect on society, for instance, similar to the farming or industrial revolution. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, goadirectory.in proficient, expert, virtuoso, and superhuman. For instance, a qualified AGI is defined as an AI that exceeds 50% of proficient adults in a vast array of non-physical jobs, and a superhuman AGI (i.e. an artificial superintelligence) is similarly defined but with a threshold of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be instances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. Among the leading propositions is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers normally hold that intelligence is required to do all of the following: [27]
factor, use technique, solve puzzles, and make judgments under unpredictability
represent knowledge, including good sense understanding
plan
learn
- communicate in natural language
- if necessary, integrate these abilities in conclusion of any given objective
Many interdisciplinary approaches (e.g. cognitive science, computational intelligence, and choice making) consider extra qualities such as imagination (the capability to form unique psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that display much of these abilities exist (e.g. see computational imagination, automated reasoning, choice support group, robot, evolutionary calculation, intelligent representative). There is dispute about whether contemporary AI systems have them to an appropriate degree.
Physical traits
Other capabilities are thought about preferable in intelligent systems, as they might affect intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. move and manipulate objects, change place to explore, and so on).
This includes the capability to spot and react to hazard. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and control items, change location to explore, and so on) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language models (LLMs) might already be or end up being AGI. Even from a less positive point of view on LLMs, there is no company requirement for an AGI to have a human-like form; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in place of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a particular physical embodiment and thus does not demand a capacity for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests meant to confirm human-level AGI have actually been thought about, consisting of: [33] [34]
The concept of the test is that the machine has to attempt and pretend to be a male, by responding to questions put to it, and it will only pass if the pretence is reasonably persuading. A significant portion of a jury, who ought to not be expert about devices, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to carry out AGI, since the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are lots of problems that have actually been conjectured to need basic intelligence to fix in addition to people. Examples consist of computer system vision, natural language understanding, and handling unexpected situations while fixing any real-world issue. [48] Even a specific task like translation requires a maker to check out and write in both languages, follow the author's argument (reason), understand the context (knowledge), and consistently reproduce the author's original intent (social intelligence). All of these issues require to be fixed concurrently in order to reach human-level device performance.
However, a number of these jobs can now be performed by contemporary big language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on lots of criteria for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic general intelligence was possible which it would exist in just a few decades. [51] AI pioneer Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists believed they could produce by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as sensible as possible according to the consensus forecasts of the time. He stated in 1967, "Within a generation ... the problem of creating 'expert system' will significantly be solved". [54]
Several classical AI jobs, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that researchers had grossly underestimated the trouble of the project. Funding companies became hesitant of AGI and put scientists under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project restored interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a casual conversation". [58] In action to this and the success of specialist systems, both industry and federal government pumped money into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never ever fulfilled. [60] For the 2nd time in 20 years, AI scientists who anticipated the impending achievement of AGI had actually been mistaken. By the 1990s, AI researchers had a reputation for making vain guarantees. They became reluctant to make predictions at all [d] and avoided reference of "human level" expert system for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI accomplished industrial success and scholastic respectability by concentrating on particular sub-problems where AI can produce proven results and business applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is greatly funded in both academic community and market. As of 2018 [update], development in this field was considered an emerging pattern, and a mature phase was expected to be reached in more than 10 years. [64]
At the millenium, numerous traditional AI researchers [65] hoped that strong AI might be developed by integrating programs that resolve various sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up path to expert system will one day satisfy the conventional top-down path over half way, prepared to supply the real-world competence and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully intelligent makers will result when the metaphorical golden spike is driven uniting the two efforts. [65]
However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the symbol grounding hypothesis by mentioning:
The expectation has frequently been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is truly only one feasible path from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we ought to even attempt to reach such a level, because it looks as if arriving would just total up to uprooting our signs from their intrinsic significances (thus merely lowering ourselves to the practical equivalent of a programmable computer system). [66]
Modern synthetic basic intelligence research study
The term "synthetic basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to satisfy objectives in a vast array of environments". [68] This kind of AGI, defined by the ability to maximise a mathematical definition of intelligence rather than exhibit human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary results". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT provided a course on AGI in 2018, organized by Lex Fridman and featuring a variety of visitor speakers.
Since 2023 [upgrade], a small number of computer system scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, significantly more scientists have an interest in open-ended learning, [76] [77] which is the idea of permitting AI to continually find out and innovate like humans do.
Feasibility
As of 2023, the advancement and potential achievement of AGI stays a subject of extreme dispute within the AI community. While standard agreement held that AGI was a distant goal, current improvements have led some researchers and industry figures to declare that early types of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This prediction stopped working to come true. Microsoft co-founder Paul Allen thought that such intelligence is unlikely in the 21st century due to the fact that it would require "unforeseeable and essentially unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern computing and human-level artificial intelligence is as broad as the gulf between existing area flight and useful faster-than-light spaceflight. [80]
An additional obstacle is the absence of clearness in defining what intelligence requires. Does it need consciousness? Must it display the ability to set goals as well as pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding needed? Does intelligence need clearly replicating the brain and its specific professors? Does it need emotions? [81]
Most AI scientists believe strong AI can be accomplished in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is among those who believe human-level AI will be accomplished, however that the present level of progress is such that a date can not precisely be predicted. [84] AI professionals' views on the feasibility of AGI wax and wane. Four polls conducted in 2012 and 2013 suggested that the typical quote among experts for when they would be 50% confident AGI would arrive was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% responded to with "never" when asked the same question however with a 90% confidence instead. [85] [86] Further present AGI development factors to consider can be found above Tests for validating human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards forecasting the arrival of human-level AI as in between 15 and 25 years from the time the forecast was made". They evaluated 95 forecasts made between 1950 and 2012 on when human-level AI will come about. [87]
In 2023, Microsoft researchers published a comprehensive assessment of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, we think that it could reasonably be seen as an early (yet still insufficient) version of an artificial general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of humans on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually currently been achieved with frontier designs. They wrote that hesitation to this view comes from 4 primary factors: a "healthy uncertainty about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 likewise marked the emergence of large multimodal models (big language designs capable of processing or creating numerous modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this ability to think before reacting represents a new, additional paradigm. It improves model outputs by spending more computing power when creating the response, whereas the design scaling paradigm enhances outputs by increasing the design size, training information and training calculate power. [93] [94]
An OpenAI employee, Vahid Kazemi, claimed in 2024 that the business had actually accomplished AGI, mentioning, "In my viewpoint, we have actually currently accomplished AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most people at a lot of tasks." He likewise addressed criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical technique of observing, assuming, and confirming. These statements have sparked argument, as they count on a broad and non-traditional definition of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's models demonstrate amazing versatility, they might not fully fulfill this standard. Notably, Kazemi's comments came soon after OpenAI removed "AGI" from the regards to its partnership with Microsoft, prompting speculation about the business's strategic intentions. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through periods of rapid development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software application or both to develop area for more development. [82] [98] [99] For example, the computer hardware offered in the twentieth century was not sufficient to carry out deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that price quotes of the time needed before a truly versatile AGI is developed differ from ten years to over a century. Since 2007 [upgrade], the agreement in the AGI research community appeared to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have actually offered a vast array of viewpoints on whether development will be this rapid. A 2012 meta-analysis of 95 such opinions found a bias towards anticipating that the onset of AGI would occur within 16-26 years for contemporary and historic forecasts alike. That paper has actually been criticized for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test mistake rate of 15.3%, considerably better than the second-best entry's rate of 26.3% (the traditional technique utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered as the initial ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ value of about 47, which corresponds roughly to a six-year-old child in first grade. A grownup pertains to about 100 typically. Similar tests were performed in 2014, with the IQ score reaching an optimum value of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in carrying out numerous diverse tasks without particular training. According to Gary Grossman in a VentureBeat article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the exact same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI requested for changes to the chatbot to comply with their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]
In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and demonstrated human-level efficiency in tasks spanning multiple domains, such as mathematics, coding, and law. This research stimulated a debate on whether GPT-4 might be considered an early, incomplete variation of artificial basic intelligence, stressing the requirement for further expedition and evaluation of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton specified that: [112]
The idea that this things might actually get smarter than people - a couple of individuals believed that, [...] But many people believed it was way off. And I thought it was method off. I thought it was 30 to 50 years or even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last few years has been pretty amazing", and that he sees no reason it would slow down, anticipating AGI within a decade or even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, mentioned his expectation that within five years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "noticeably plausible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is considered the most promising path to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With entire brain simulation, a brain design is constructed by scanning and mapping a biological brain in information, and after that copying and mimicing it on a computer system or another computational device. The simulation design should be adequately faithful to the original, so that it acts in virtually the same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is discussed in computational neuroscience and neuroinformatics, and for medical research study functions. It has been talked about in synthetic intelligence research study [103] as a method to strong AI. Neuroimaging technologies that could deliver the needed detailed understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will become offered on a similar timescale to the computing power required to imitate it.
Early approximates
For low-level brain simulation, a very powerful cluster of computer systems or GPUs would be required, provided the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number declines with age, supporting by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at various estimates for the hardware required to equate to the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was comparable to one "floating-point operation" - a step used to rate present supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He utilized this figure to anticipate the essential hardware would be offered at some point in between 2015 and 2025, if the exponential development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell design assumed by Kurzweil and used in numerous existing synthetic neural network implementations is easy compared to biological nerve cells. A brain simulation would likely have to record the in-depth cellular behaviour of biological nerve cells, currently comprehended just in broad outline. The overhead introduced by full modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's quote. In addition, the estimates do not account for glial cells, which are understood to play a function in cognitive processes. [125]
A fundamental criticism of the simulated brain approach stems from embodied cognition theory which asserts that human embodiment is a necessary element of human intelligence and is essential to ground significance. [126] [127] If this theory is correct, any totally practical brain model will need to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual embodiment (like in metaverses like Second Life) as a choice, but it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in approach
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a difference between two hypotheses about expert system: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "consciousness". Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and consciousness.
The very first one he called "strong" because it makes a stronger declaration: it assumes something unique has actually taken place to the device that exceeds those capabilities that we can test. The behaviour of a "weak AI" maker would be precisely identical to a "strong AI" machine, but the latter would likewise have subjective mindful experience. This usage is likewise typical in academic AI research and books. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level artificial general intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that consciousness is needed for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most expert system scientists the question is out-of-scope. [130]
Mainstream AI is most thinking about how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no need to know if it actually has mind - indeed, there would be no other way to inform. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "artificial general intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for granted, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are 2 various things.
Consciousness
Consciousness can have different meanings, and some elements play significant functions in science fiction and the principles of artificial intelligence:
Sentience (or "incredible consciousness"): The capability to "feel" perceptions or emotions subjectively, rather than the ability to reason about perceptions. Some philosophers, such as David Chalmers, use the term "consciousness" to refer solely to extraordinary consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience develops is referred to as the tough problem of awareness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be mindful. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) however a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had accomplished life, though this claim was widely challenged by other specialists. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, especially to be knowingly knowledgeable about one's own thoughts. This is opposed to just being the "topic of one's believed"-an operating system or debugger has the ability to be "conscious of itself" (that is, to represent itself in the very same way it represents everything else)-however this is not what individuals typically indicate when they use the term "self-awareness". [g]
These traits have an ethical measurement. AI life would generate concerns of well-being and legal security, similarly to animals. [136] Other elements of consciousness associated to cognitive capabilities are also appropriate to the idea of AI rights. [137] Figuring out how to integrate innovative AI with existing legal and social frameworks is an emergent problem. [138]
Benefits
AGI might have a broad variety of applications. If oriented towards such objectives, AGI could assist reduce numerous problems on the planet such as hunger, poverty and health issue. [139]
AGI could enhance performance and effectiveness in most tasks. For example, in public health, AGI could speed up medical research study, notably versus cancer. [140] It might look after the elderly, [141] and democratize access to rapid, premium medical diagnostics. It might provide fun, cheap and tailored education. [141] The requirement to work to subsist could become outdated if the wealth produced is properly redistributed. [141] [142] This likewise raises the question of the place of human beings in a drastically automated society.
AGI might also assist to make logical decisions, and to anticipate and avoid catastrophes. It could likewise help to profit of potentially disastrous technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which could be difficult if the Vulnerable World Hypothesis turns out to be true), [144] it might take steps to considerably reduce the risks [143] while lessening the impact of these measures on our quality of life.
Risks
Existential risks
AGI might represent numerous types of existential danger, which are dangers that threaten "the early termination of Earth-originating smart life or the irreversible and drastic damage of its potential for desirable future development". [145] The threat of human extinction from AGI has actually been the subject of many arguments, but there is likewise the possibility that the development of AGI would cause a permanently flawed future. Notably, it might be used to spread and preserve the set of values of whoever develops it. If humankind still has moral blind spots comparable to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI might assist in mass surveillance and indoctrination, which might be used to produce a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a danger for the makers themselves. If makers that are sentient or otherwise deserving of ethical consideration are mass produced in the future, participating in a civilizational path that forever ignores their well-being and interests might be an existential disaster. [149] [150] Considering how much AGI might improve mankind's future and help in reducing other existential dangers, Toby Ord calls these existential risks "an argument for continuing with due caution", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI presents an existential risk for humans, and that this danger requires more attention, is questionable but has actually been endorsed in 2023 by lots of public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of incalculable advantages and risks, the experts are definitely doing everything possible to make sure the very best outcome, right? Wrong. If an exceptional alien civilisation sent us a message stating, 'We'll get here in a couple of years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of mankind has sometimes been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence enabled mankind to control gorillas, which are now susceptible in ways that they might not have actually anticipated. As a result, the gorilla has ended up being a threatened species, not out of malice, but simply as a security damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind which we should beware not to anthropomorphize them and analyze their intents as we would for people. He said that individuals will not be "smart adequate to develop super-intelligent devices, yet ridiculously foolish to the point of offering it moronic objectives with no safeguards". [155] On the other side, the concept of crucial merging recommends that practically whatever their goals, smart representatives will have factors to try to make it through and obtain more power as intermediary actions to achieving these goals. And that this does not require having emotions. [156]
Many scholars who are worried about existential threat supporter for more research into solving the "control issue" to address the concern: what kinds of safeguards, algorithms, or architectures can programmers execute to maximise the probability that their recursively-improving AI would continue to act in a friendly, rather than devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is complicated by the AI arms race (which might result in a race to the bottom of security precautions in order to release items before competitors), [159] and the usage of AI in weapon systems. [160]
The thesis that AI can posture existential danger likewise has critics. Skeptics normally say that AGI is not likely in the short-term, or that issues about AGI distract from other issues related to present AI. [161] Former Google scams czar Shuman Ghosemajumder considers that for numerous individuals outside of the technology industry, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in further misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an unreasonable belief in an omnipotent God. [163] Some scientists believe that the communication projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other industry leaders and researchers, released a joint declaration asserting that "Mitigating the threat of termination from AI should be a worldwide top priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. labor force could have at least 10% of their work jobs impacted by the intro of LLMs, links.gtanet.com.br while around 19% of workers might see a minimum of 50% of their tasks impacted". [166] [167] They think about workplace workers to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many individuals can end up badly poor if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern seems to be toward the second option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will need governments to embrace a universal fundamental income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI result AI security - Research location on making AI safe and beneficial AI positioning - AI conformance to the intended objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of maker knowing BRAIN Initiative - Collaborative public-private research initiative revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of expert system to play different games Generative synthetic intelligence - AI system efficient in creating material in response to triggers Human Brain Project - Scientific research study job Intelligence amplification - Use of information technology to augment human intelligence (IA). Machine ethics - Moral behaviours of man-made makers. Moravec's paradox. Multi-task knowing - Solving several maker learning tasks at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of artificial intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical motion. Synthetic intelligence - Alternate term for or form of expert system. Transfer learning - Machine learning technique. Loebner Prize - Annual AI competitors. Hardware for synthetic intelligence - Hardware specifically developed and enhanced for expert system. Weak synthetic intelligence - Form of artificial intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the academic definition of "strong AI" and weak AI in the post Chinese room. ^ AI founder John McCarthy composes: "we can not yet define in basic what sort of computational treatments we want to call intelligent. " [26] (For a conversation of some meanings of intelligence used by expert system researchers, see viewpoint of expert system.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the dismantling of AI research in England. [55] In the U.S., DARPA became figured out to fund just "mission-oriented direct research, instead of fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a great relief to the rest of the employees in AI if the innovators of new general formalisms would express their hopes in a more safeguarded type than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As specified in a standard AI textbook: "The assertion that makers might possibly act smartly (or, perhaps better, act as if they were smart) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are really believing (as opposed to mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in expert system expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton gives up Google and alerts of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you alter changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York City Times. The genuine threat is not AI itself but the way we release it. ^ "Impressed by artificial intelligence? Experts state AGI is following, and it has 'existential' dangers". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential threats to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last creation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of termination from AI should be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI specialists warn of threat of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from creating machines that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil explains strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the original on 25 September 2009. Retrieved 8 October 2007. ^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Expert system is changing our world - it is on everybody to make sure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to accomplishing AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based on the subjects covered by major AI textbooks, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York City: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine young boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not identify GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar test to AP Biology. Here's a list of challenging examinations both AI versions have passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York City Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers avoided the term expert system for fear of being deemed wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Technology an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Science. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of maker intelligence: Despite progress in maker intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Expert system will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and qoocle.com Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general artificial intelligence will not be recognized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of skilled viewpoint. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, edited by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone in between narrow and general AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the consensus is that it is not AGI. ... If nothing else, GPT-3 informs us there is a happy medium in between narrow and basic AI. ^ Quach, Katyanna. "A designer developed an AI chatbot using GPT-3 that assisted a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to managing robotics", TechCrunch, archived from the original on 16 June 2022, recovered 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might equal human intelligence in 'simply a couple of years,' says CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everybody seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research study project maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A wide variety of views in present research, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for curiosity by the field about why a program acts the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the business's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost exceed advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: courses, dangers, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security risk' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York City, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the original on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The fascinating Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI risk: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). " over risk positioned however expert system can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator says big tech is lying about AI extinction risk". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market impact capacity of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their jobs affected by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic earnings due to the fact that 'in the future, manual labor will be an option'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Artificial Intelligence. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's critique of Kurzweil", Artificial Intelligence, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the original on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Viewpoint, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The supreme effort is to make computer system programs that can resolve problems and accomplish goals on the planet in addition to human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, retrieved 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Logical Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Artificial Intelligence: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, retrieved 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the initial on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on significance and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the original on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, recovered 4 September 2013 - by means of ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Think of the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system simple adequate to be easy to understand will not be made complex enough to act smartly, while any system complicated enough to behave smartly will be too made complex to understand." (p. 197.) Computer scientist Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy foolish. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, recovered 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from devices. For biological creatures, factor and purpose come from acting worldwide and experiencing the consequences. Expert systems - disembodied, strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically anticipate that those who intend to get abundant from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't count on governments driven by campaign financing contributions [from tech companies] to press back.' ... Marcus information the needs that residents should make from their governments and the tech business. They include openness on how AI systems work; payment for individuals if their data [are] used to train LLMs (large language design) s and the right to grant this usage; and the ability to hold tech companies liable for the damages they cause by removing Section 230, enforcing cash penalites, and passing stricter product liability laws ... Marcus likewise recommends ... that a new, AI-specific federal agency, similar to the FDA, experienciacortazar.com.ar the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] a professional licensing routine for engineers that would work in a comparable way to medical licenses, drapia.org malpractice suits, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in synthetic intelligence", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled people for years, reveals the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has revealed that although NLP (natural-language processing) designs can unbelievable accomplishments, their capabilities are very much limited by the quantity of context they receive. This [...] could trigger [difficulties] for scientists who want to use them to do things such as evaluate ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to function as training data for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create phony videos identical from genuine ones. How much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we imply practical videos produced utilizing expert system that actually trick people, then they hardly exist. The fakes aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their function better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning models used in scientific research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of synthetic general intelligence are stymmied by the same old issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and dispersed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to ignore inconsistent evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [basic intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared not able to factor rationally and attempted to depend on its vast database of ... realities originated from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however undependable. Rules-based systems can not handle situations their programmers did not prepare for. Learning systems are limited by the data on which they were trained. AI failures have already caused disaster. Advanced auto-pilot features in automobiles, although they perform well in some scenarios, have actually driven vehicles without cautioning into trucks, concrete barriers, and parked vehicles. In the wrong circumstance, AI systems go from supersmart to superdumb in an immediate. When an opponent is attempting to manipulate and hack an AI system, the risks are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new innovations however count on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.