Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of artificial intelligence (AI) that matches or exceeds human cognitive capabilities throughout a vast array of cognitive jobs. This contrasts with narrow AI, which is limited to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly exceeds human cognitive abilities. AGI is thought about one of the definitions of strong AI.
Creating AGI is a primary goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 survey identified 72 active AGI research study and development jobs across 37 nations. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument amongst researchers and experts. As of 2023, some argue that it might be possible in years or decades; others maintain it might take a century or longer; a minority think it may never ever be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has expressed issues about the fast progress towards AGI, recommending it could be achieved quicker than many expect. [7]
There is argument on the precise meaning of AGI and concerning whether modern large language designs (LLMs) such as GPT-4 are early types of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential danger. [11] [12] [13] Many specialists on AI have actually specified that reducing the threat of human extinction postured by AGI should be a global top priority. [14] [15] Others discover the development of AGI to be too remote to present such a danger. [16] [17]
Terminology
AGI is also understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, asteroidsathome.net or general intelligent action. [21]
Some academic sources reserve the term "strong AI" for computer system programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) is able to fix one particular issue however lacks basic cognitive abilities. [22] [19] Some scholastic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the exact same sense as humans. [a]
Related ideas include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical kind of AGI that is far more generally intelligent than humans, [23] while the idea of transformative AI associates with AI having a big effect on society, for instance, comparable to the agricultural or industrial revolution. [24]
A framework for categorizing AGI in levels was proposed in 2023 by Google DeepMind researchers. They specify 5 levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a qualified AGI is specified as an AI that surpasses 50% of knowledgeable grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a limit of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. Among the leading propositions is the Turing test. However, there are other widely known meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence characteristics
Researchers normally hold that intelligence is needed to do all of the following: [27]
reason, usage technique, solve puzzles, and make judgments under uncertainty
represent understanding, including common sense knowledge
plan
discover
- interact in natural language
- if essential, integrate these skills in conclusion of any provided objective
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) consider additional characteristics such as imagination (the ability to form unique psychological images and ideas) [28] and autonomy. [29]
Computer-based systems that display much of these abilities exist (e.g. see computational imagination, automated reasoning, decision support group, robot, evolutionary computation, intelligent representative). There is argument about whether modern AI systems possess them to a sufficient degree.
Physical characteristics
Other capabilities are considered desirable in intelligent systems, as they may impact intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and manipulate objects, modification place to check out, etc).
This consists of the ability to spot and react to threat. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. move and manipulate items, modification place to explore, and so on) can be preferable for some smart systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language models (LLMs) may already be or end up being AGI. Even from a less positive point of view on LLMs, there is no firm requirement for an AGI to have a human-like kind; being a silicon-based computational system is sufficient, provided it can process input (language) from the external world in location of human senses. This interpretation lines up with the understanding that AGI has never been proscribed a specific physical personification and hence does not require a capability for mobility or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests suggested to confirm human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the device needs to try and pretend to be a guy, by responding to questions put to it, and it will only pass if the pretence is reasonably convincing. A substantial portion of a jury, who need to not be expert about makers, must be taken in by the pretence. [37]
AI-complete problems
An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to implement AGI, since the option is beyond the capabilities of a purpose-specific algorithm. [47]
There are many problems that have actually been conjectured to need general intelligence to solve as well as people. Examples consist of computer system vision, natural language understanding, and dealing with unexpected circumstances while fixing any real-world issue. [48] Even a particular task like translation requires a machine to read and compose in both languages, follow the author's argument (factor), understand the context (understanding), and faithfully reproduce the author's initial intent (social intelligence). All of these problems require to be fixed simultaneously in order to reach human-level machine performance.
However, a lot of these tasks can now be carried out by modern big language models. According to Stanford University's 2024 AI index, AI has reached human-level efficiency on numerous benchmarks for reading understanding and visual thinking. [49]
History
Classical AI
Modern AI research study began in the mid-1950s. [50] The first generation of AI researchers were persuaded that artificial general intelligence was possible which it would exist in simply a couple of decades. [51] AI pioneer Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a male can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI pioneer Marvin Minsky was a specialist [53] on the job of making HAL 9000 as practical as possible according to the agreement forecasts of the time. He said in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will substantially be solved". [54]
Several classical AI projects, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being obvious that researchers had grossly underestimated the problem of the project. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce useful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a table talk". [58] In action to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never satisfied. [60] For the second time in 20 years, AI researchers who forecasted the imminent accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a reputation for making vain guarantees. They ended up being hesitant to make predictions at all [d] and prevented mention of "human level" expert system for fear of being identified "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained business success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable results and business applications, such as speech recognition and recommendation algorithms. [63] These "applied AI" systems are now utilized thoroughly throughout the technology market, and research study in this vein is heavily funded in both academia and industry. As of 2018 [update], advancement in this field was considered an emerging trend, and a mature stage was anticipated to be reached in more than ten years. [64]
At the millenium, numerous mainstream AI researchers [65] hoped that strong AI could be established by combining programs that fix various sub-problems. Hans Moravec composed in 1988:
I am confident that this bottom-up path to artificial intelligence will one day meet the conventional top-down route over half way, ready to offer the real-world skills and the commonsense understanding that has actually been so frustratingly evasive in reasoning programs. Fully smart devices will result when the metaphorical golden spike is driven uniting the 2 efforts. [65]
However, even at the time, this was disputed. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:
The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is actually only one viable route from sense to signs: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we need to even attempt to reach such a level, since it appears arriving would just total up to uprooting our symbols from their intrinsic meanings (consequently simply reducing ourselves to the functional equivalent of a programmable computer). [66]
Modern artificial basic intelligence research study
The term "artificial basic intelligence" was used as early as 1997, by Mark Gubrud [67] in a conversation of the implications of completely automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent increases "the ability to please objectives in a wide variety of environments". [68] This type of AGI, characterized by the capability to maximise a mathematical meaning of intelligence instead of exhibit human-like behaviour, [69] was likewise called universal artificial intelligence. [70]
The term AGI was re-introduced and promoted by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and including a variety of visitor speakers.
As of 2023 [update], a little number of computer scientists are active in AGI research study, and numerous add to a series of AGI conferences. However, progressively more scientists are interested in open-ended knowing, [76] [77] which is the concept of allowing AI to continuously find out and innovate like humans do.
Feasibility
As of 2023, the development and prospective accomplishment of AGI stays a subject of intense dispute within the AI neighborhood. While traditional consensus held that AGI was a distant goal, current improvements have led some scientists and market figures to claim that early forms of AGI might already exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, of doing any work a man can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century because it would require "unforeseeable and essentially unpredictable developments" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf in between modern-day computing and human-level expert system is as wide as the gulf between present area flight and practical faster-than-light spaceflight. [80]
An additional challenge is the lack of clarity in specifying what intelligence entails. Does it require consciousness? Must it show the capability to set objectives in addition to pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding needed? Does intelligence need explicitly reproducing the brain and its specific professors? Does it require emotions? [81]
Most AI scientists believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, however that today level of development is such that a date can not precisely be predicted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls carried out in 2012 and 2013 suggested that the average quote among experts for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the experts, 16.5% responded to with "never" when asked the very same concern but with a 90% confidence instead. [85] [86] Further current AGI development considerations can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute discovered that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They analyzed 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft scientists released a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's abilities, our company believe that it could fairly be deemed an early (yet still insufficient) variation of a synthetic general intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig wrote in 2023 that a considerable level of basic intelligence has actually currently been accomplished with frontier models. They composed that reluctance to this view originates from 4 primary reasons: a "healthy apprehension about metrics for AGI", an "ideological dedication to alternative AI or methods", a "commitment to human (or biological) exceptionalism", or a "issue about the financial implications of AGI". [91]
2023 also marked the emergence of large multimodal models (large language designs capable of processing or producing numerous modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the first of a series of designs that "invest more time believing before they react". According to Mira Murati, this capability to believe before responding represents a new, extra paradigm. It improves design outputs by spending more computing power when producing the answer, whereas the design scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the company had actually attained AGI, stating, "In my viewpoint, we have actually currently attained AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most human beings at most jobs." He also resolved criticisms that large language models (LLMs) simply follow predefined patterns, comparing their knowing procedure to the clinical approach of observing, hypothesizing, and verifying. These declarations have triggered dispute, as they rely on a broad and non-traditional definition of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's models demonstrate amazing flexibility, they may not fully meet this requirement. Notably, Kazemi's remarks came quickly after OpenAI eliminated "AGI" from the terms of its collaboration with Microsoft, prompting speculation about the business's strategic intents. [95]
Timescales
Progress in synthetic intelligence has actually historically gone through periods of fast progress separated by durations when progress appeared to stop. [82] Ending each hiatus were fundamental advances in hardware, software application or both to develop space for further development. [82] [98] [99] For instance, the computer hardware readily available in the twentieth century was not adequate to carry out deep knowing, which requires large numbers of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel says that quotes of the time needed before a truly versatile AGI is developed vary from 10 years to over a century. Since 2007 [upgrade], the consensus in the AGI research community appeared to be that the timeline talked about by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. in between 2015 and 2045) was plausible. [103] Mainstream AI researchers have actually provided a wide variety of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such opinions discovered a bias towards predicting that the beginning of AGI would happen within 16-26 years for contemporary and historical predictions alike. That paper has actually been slammed for how it classified viewpoints as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, substantially much better than the second-best entry's rate of 26.3% (the conventional approach used a weighted sum of scores from different pre-defined classifiers). [105] AlexNet was considered the initial ground-breaker of the existing deep learning wave. [105]
In 2017, scientists Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old child in first grade. An adult pertains to about 100 usually. Similar tests were performed in 2014, with the IQ rating reaching an optimum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language design efficient in carrying out lots of varied tasks without particular training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]
In the very same year, Jason Rohrer used his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested changes to the chatbot to abide by their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early version of OpenAI's GPT-4, contending that it showed more basic intelligence than previous AI designs and demonstrated human-level efficiency in tasks spanning several domains, such as mathematics, coding, and law. This research stimulated an argument on whether GPT-4 could be thought about an early, insufficient version of synthetic basic intelligence, stressing the need for more expedition and examination of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this things might in fact get smarter than people - a couple of people thought that, [...] But most individuals thought it was method off. And I believed it was method off. I thought it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis likewise stated that "The development in the last few years has been pretty incredible", and that he sees no reason why it would decrease, anticipating AGI within a years and even a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test at least in addition to human beings. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI employee, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the development of transformer designs like in ChatGPT is considered the most appealing course to AGI, [116] [117] whole brain emulation can serve as an alternative technique. With whole brain simulation, a brain design is developed by scanning and mapping a biological brain in information, and after that copying and replicating it on a computer system or another computational gadget. The simulation design need to be sufficiently faithful to the original, so that it acts in virtually the exact same way as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has been gone over in synthetic intelligence research study [103] as an approach to strong AI. Neuroimaging technologies that might deliver the required in-depth understanding are enhancing quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will become available on a comparable timescale to the computing power needed to emulate it.
Early estimates
For low-level brain simulation, an extremely powerful cluster of computers or GPUs would be required, offered the enormous amount of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based upon a basic switch design for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at different quotes for the hardware required to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For contrast, if a "computation" was equivalent to one "floating-point operation" - a measure used to rate current supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, accomplished in 2011, while 1018 was achieved in 2022.) He utilized this figure to predict the required hardware would be readily available at some point between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially in-depth and openly available atlas of the human brain. [124] In 2023, researchers from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The artificial nerve cell model presumed by Kurzweil and used in numerous existing synthetic neural network applications is simple compared with biological neurons. A brain simulation would likely have to record the detailed cellular behaviour of biological nerve cells, currently comprehended just in broad overview. The overhead introduced by full modeling of the biological, chemical, and physical details of neural behaviour (especially on a molecular scale) would need computational powers numerous orders of magnitude bigger than Kurzweil's price quote. In addition, the quotes do not account for glial cells, which are known to play a role in cognitive procedures. [125]
A basic criticism of the simulated brain technique originates from embodied cognition theory which asserts that human embodiment is an essential element of human intelligence and is essential to ground significance. [126] [127] If this theory is proper, any totally functional brain model will require to encompass more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, however it is unidentified whether this would suffice.
Philosophical viewpoint
"Strong AI" as defined in approach
In 1980, philosopher John Searle coined the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between 2 hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "awareness". Weak AI hypothesis: A synthetic intelligence system can (just) imitate it believes and has a mind and awareness.
The very first one he called "strong" due to the fact that it makes a stronger declaration: it assumes something unique has happened to the machine that goes beyond those capabilities that we can test. The behaviour of a "weak AI" maker would be precisely similar to a "strong AI" device, however the latter would also have subjective conscious experience. This use is also common in academic AI research and books. [129]
In contrast to Searle and mainstream AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to mean "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that consciousness is required for human-level AGI. Academic theorists such as Searle do not believe that holds true, and to most synthetic intelligence researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program acts. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no need to know if it really has mind - indeed, there would be no method to inform. For AI research, Searle's "weak AI hypothesis" is equivalent to the declaration "artificial basic intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for granted, and don't care about the strong AI hypothesis." [130] Thus, for scholastic AI research study, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have numerous meanings, and some elements play considerable roles in sci-fi and the principles of synthetic intelligence:
Sentience (or "extraordinary consciousness"): The capability to "feel" understandings or feelings subjectively, instead of the capability to reason about understandings. Some philosophers, such as David Chalmers, use the term "awareness" to refer specifically to phenomenal awareness, which is roughly equivalent to sentience. [132] Determining why and how subjective experience develops is understood as the hard problem of consciousness. [133] Thomas Nagel discussed in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat appears to be mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer declared that the company's AI chatbot, LaMDA, had attained life, though this claim was widely challenged by other specialists. [135]
Self-awareness: To have conscious awareness of oneself as a different individual, particularly to be knowingly familiar with one's own thoughts. This is opposed to simply being the "topic of one's believed"-an operating system or debugger has the ability to be "conscious of itself" (that is, to represent itself in the exact same way it represents everything else)-but this is not what individuals typically imply when they use the term "self-awareness". [g]
These qualities have an ethical dimension. AI life would trigger concerns of well-being and legal protection, similarly to animals. [136] Other aspects of consciousness related to cognitive capabilities are likewise appropriate to the idea of AI rights. [137] Determining how to integrate advanced AI with existing legal and social frameworks is an emergent issue. [138]
Benefits
AGI might have a variety of applications. If oriented towards such goals, AGI might help alleviate numerous issues worldwide such as hunger, hardship and health issue. [139]
AGI could enhance performance and effectiveness in a lot of jobs. For example, in public health, AGI might speed up medical research study, notably versus cancer. [140] It could look after the elderly, [141] and democratize access to quick, high-quality medical diagnostics. It could provide fun, cheap and individualized education. [141] The requirement to work to subsist might become obsolete if the wealth produced is correctly rearranged. [141] [142] This likewise raises the question of the place of humans in a drastically automated society.
AGI might also assist to make rational choices, and to anticipate and prevent catastrophes. It might also assist to reap the advantages of potentially catastrophic innovations such as nanotechnology or climate engineering, while preventing the associated risks. [143] If an AGI's main objective is to prevent existential catastrophes such as human extinction (which might be tough if the Vulnerable World Hypothesis turns out to be real), [144] it could take measures to considerably lower the risks [143] while lessening the effect of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent several types of existential danger, which are threats that threaten "the early extinction of Earth-originating smart life or the long-term and extreme damage of its potential for desirable future advancement". [145] The threat of human termination from AGI has been the topic of many debates, however there is likewise the possibility that the development of AGI would cause a permanently flawed future. Notably, it might be utilized to spread out and preserve the set of values of whoever develops it. If humanity still has moral blind spots similar to slavery in the past, AGI might irreversibly entrench it, preventing ethical development. [146] Furthermore, AGI could assist in mass monitoring and indoctrination, which might be utilized to produce a steady repressive around the world totalitarian routine. [147] [148] There is also a risk for the devices themselves. If machines that are sentient or otherwise deserving of moral factor to consider are mass created in the future, participating in a civilizational course that forever overlooks their welfare and interests could be an existential disaster. [149] [150] Considering how much AGI might enhance humanity's future and help in reducing other existential risks, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI poses an existential risk for humans, which this risk needs more attention, is controversial but has actually been backed in 2023 by lots of public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of enormous advantages and risks, the experts are certainly doing whatever possible to guarantee the finest outcome, right? Wrong. If a superior alien civilisation sent us a message stating, 'We'll show up in a couple of decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The prospective fate of humankind has sometimes been compared to the fate of gorillas threatened by human activities. The contrast specifies that greater intelligence permitted humankind to control gorillas, which are now susceptible in ways that they could not have actually anticipated. As a result, the gorilla has actually ended up being a threatened species, not out of malice, but just as a civilian casualties from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate humanity which we must be mindful not to anthropomorphize them and translate their intents as we would for people. He stated that individuals won't be "wise adequate to create super-intelligent machines, yet extremely dumb to the point of providing it moronic goals without any safeguards". [155] On the other side, the concept of instrumental convergence recommends that practically whatever their goals, smart representatives will have reasons to try to survive and obtain more power as intermediary steps to achieving these goals. Which this does not require having emotions. [156]
Many scholars who are concerned about existential threat advocate for more research study into fixing the "control issue" to answer the question: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the possibility that their recursively-improving AI would continue to act in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might result in a race to the bottom of security precautions in order to release products before competitors), [159] and the use of AI in weapon systems. [160]
The thesis that AI can present existential risk also has detractors. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI sidetrack from other problems connected to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of individuals outside of the technology industry, existing chatbots and LLMs are currently perceived as though they were AGI, leading to additional misconception and fear. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an irrational belief in the possibility of superintelligence replacing an unreasonable belief in an omnipotent God. [163] Some scientists think that the interaction projects on AI existential threat by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulative capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, along with other market leaders and scientists, issued a joint declaration asserting that "Mitigating the risk of extinction from AI should be a worldwide priority alongside other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work jobs affected by the introduction of LLMs, while around 19% of workers may see a minimum of 50% of their jobs affected". [166] [167] They consider office workers to be the most exposed, for example mathematicians, accountants or web designers. [167] AGI could have a better autonomy, ability to make decisions, to user interface with other computer system tools, but likewise to manage robotized bodies.
According to Stephen Hawking, the outcome of automation on the quality of life will depend on how the wealth will be rearranged: [142]
Everyone can delight in a life of luxurious leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby against wealth redistribution. Up until now, the trend appears to be towards the 2nd alternative, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require federal governments to adopt a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive abilities similar to those of the animal or human brain AI impact AI security - Research location on making AI safe and advantageous AI positioning - AI conformance to the desired objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of device knowing BRAIN Initiative - Collaborative public-private research study effort revealed by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre General game playing - Ability of synthetic intelligence to play various video games Generative expert system - AI system efficient in creating material in reaction to prompts Human Brain Project - Scientific research job Intelligence amplification - Use of infotech to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured devices. Moravec's paradox. Multi-task learning - Solving numerous machine learning tasks at the same time. Neural scaling law - Statistical law in device knowing. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of expert system. Transfer knowing - Machine learning method. Loebner Prize - Annual AI competition. Hardware for expert system - Hardware specifically created and optimized for artificial intelligence. Weak expert system - Form of artificial intelligence.
Notes
^ a b See below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the short article Chinese space. ^ AI founder John McCarthy composes: "we can not yet characterize in basic what type of computational treatments we wish to call smart. " [26] (For a conversation of some meanings of intelligence used by artificial intelligence researchers, see approach of synthetic intelligence.). ^ The Lighthill report specifically slammed AI's "grand goals" and led the taking apart of AI research in England. [55] In the U.S., DARPA became determined to money just "mission-oriented direct research study, instead of fundamental undirected research study". [56] [57] ^ As AI founder John McCarthy writes "it would be an excellent relief to the remainder of the employees in AI if the inventors of new general formalisms would reveal their hopes in a more protected form than has often held true." [61] ^ In "Mind Children" [122] 1015 cps is used. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil introduced. ^ As defined in a standard AI textbook: "The assertion that makers might perhaps act intelligently (or, maybe better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are actually thinking (instead of mimicing thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is artificial narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that synthetic basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is developing synthetic basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Survey of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were identified as being active in 2020. ^ a b c "AI timelines: What do specialists in synthetic intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI pioneer Geoffrey Hinton stops Google and alerts of threat ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can prevent the bad actors from utilizing it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you alter modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real risk is not AI itself however the way we deploy it. ^ "Impressed by expert system? Experts say AGI is following, and clashofcryptos.trade it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might position existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that humankind needs to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. Mitigating the threat of termination from AI ought to be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI experts warn of threat of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing makers that can outthink us in general methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential threat". Medium. There is no reason to fear AI as an existential threat. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "machine intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to make certain that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of intelligent qualities is based upon the subjects covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The principle of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the original on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real kid - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists challenge whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of difficult examinations both AI variations have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Take Advantage Of It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is outdated. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended evaluating an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My brand-new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Specifying Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Expert System. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 priced estimate in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced quote in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Respond to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the original on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software engineers avoided the term artificial intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite development in device intelligence, synthetic basic intelligence is still a major difficulty". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic artificial intelligence will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or destruction?". The New Yorker. Archived from the original on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in expert system: A survey of professional opinion. In Fundamental issues of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, hb9lc.org That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep learning in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is twice as clever as Siri - however a six-year-old beats both] (in German). Archived from the original on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI golden zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are already seeing an early example of an AGI system in the just recently revealed GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the first example of an AGI system? This is arguable, however the agreement is that it is not AGI. ... If nothing else, GPT-3 informs us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A developer developed an AI chatbot using GPT-3 that helped a man speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's new AI can perform over 600 tasks, from playing video games to controlling robotics", TechCrunch, archived from the original on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York City Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. could equal human intelligence in 'simply a couple of years,' states CEO of Google's primary A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Giant Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system might become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced estimate in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (quoted in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the way it does. ^ Chalmers, David J. (9 August 2023). "Could a Large Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who believes the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Benefit from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Artificial Intelligence Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, strategies (Reprinted with corrections 2017 ed.). Oxford, UK; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that human beings will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Expert System". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of artificial intelligence - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The interesting Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The remarkable Facebook dispute between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report cautions". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed however synthetic intelligence can not be overlooked". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the original on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, warn scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder states big tech is lying about AI extinction threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: pyra-handheld.com An early take a look at the labor market impact capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of employees might see their jobs affected by AI. These are the tasks most affected". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal basic earnings because 'in the future, physical work will be a choice'". Business Insider. Archived from the initial on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the original on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Expert system and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a response to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, recovered 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Expert System: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Expert System: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The ultimate effort is to make computer system programs that can resolve problems and accomplish objectives in the world as well as humans. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, recovered 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the original on 16 October 2011, recovered 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, obtained 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, obtained 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, obtained 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - via ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal numbers of neuronal and forum.batman.gainedge.org nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - through ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, recovered 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system basic adequate to be easy to understand will not be complicated enough to behave intelligently, while any system complicated enough to act smartly will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead easy dumb. They work, but they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the initial on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Will" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what distinguishes us from makers. For biological animals, factor and function come from acting worldwide and experiencing the repercussions. Artificial intelligences - disembodied, complete strangers to blood, sweat, forum.altaycoins.com and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who wish to get abundant from AI are going to have the interests of the rest people close at heart,' ... writes [Gary Marcus] 'We can't rely on federal governments driven by campaign finance contributions [from tech business] to press back.' ... Marcus information the demands that people should make of their governments and the tech business. They consist of openness on how AI systems work; settlement for people if their information [are] utilized to train LLMs (big language design) s and the right to consent to this use; and the ability to hold tech companies responsible for the damages they cause by eliminating Section 230, imposing cash penalites, and passing stricter item liability laws ... Marcus likewise recommends ... that a new, AI-specific federal firm, akin to the FDA, the FCC, or the FTC, may offer the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... develop [ing] an expert licensing routine for engineers that would work in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medication. 'What if, like physicians,' she asks ..., 'AI engineers also pledged to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stymied humans for decades, reveals the constraints of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder secret competition has actually revealed that although NLP (natural-language processing) models are capable of unbelievable accomplishments, their capabilities are extremely much limited by the quantity of context they get. This [...] could cause [problems] for scientists who hope to use them to do things such as examine ancient languages. Sometimes, there are couple of historic records on long-gone civilizations to act as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create fake videos indistinguishable from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we mean realistic videos produced using expert system that in fact deceive people, then they hardly exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in basic, running in our media as counterfeited evidence. Their role much better resembles that of cartoons, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We should avoid humanizing machine-learning designs used in scientific research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a maker a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the exact same old problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (2nd ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, recovered 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead authorities to disregard inconsistent proof?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test however showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at jobs that require real humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to factor rationally and tried to depend on its vast database of ... facts stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however unreliable. Rules-based systems can not deal with scenarios their programmers did not anticipate. Learning systems are restricted by the information on which they were trained. AI failures have currently caused disaster. Advanced auto-pilot functions in cars and trucks, although they carry out well in some circumstances, have actually driven cars without warning into trucks, concrete barriers, and parked cars and trucks. In the wrong situation, AI systems go from supersmart to superdumb in an instant. When an opponent is attempting to control and hack an AI system, the threats are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by brand-new technologies however depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.